uji coba yang, hueks!!

Ah, uah!! Handle with care!  UJI COBA ILMU PENGETAHUAN yang menyakitkan, berbahaya, dan kacau. ”blup blup, dhhuuuaaarrrr!!” terluka akibat terkena ledakan; ”blup blup”, bertahan di sauna yang mendidih, keracunan zat kimia; duut!!. terus-menerus mencium bau kentut. Pekerjaan apa yang hanya mendengarnya saja terasa kotor, berbahaya dan menyakitkan?? Jawabannya adalah uji coba yang dilakukan oleh para ilmuwan . sebenarnya, kenapa mereka melakukan uji coba seperti itu???

  • Uji coba yang menyebarkan bau menyengat dan kotor

ada ilmuwan yang melakukan uji coba serupa dengan langsung mencobanya pada diri sendiri. dia adalah Lazzaro Spallanzani, seorang ilmuwan italia terkenal yang meneliti dengan menelan spon yang diikat dengan tali untuk mengambil getah lambungnya. kemudian spons yang telah berlumuran getah lambung tersebut diapit di ketiak bersama dengan makanan, dan melihat apakah terjadi proses pencernaan terhadap makanan tersebut.

kemudian, Robert Bunsen dengan nama panjang Robert Wilhelm Eberhard Bunsen (31 Maret 181116 Agustus 1899) merupakan seorang kimiawan berkebangsaan Jerman. yang meneliti tentang zat cacodyl yang mengeluarkan bau menyengat.

Pada masa hidupnya dia adalah seorang peneliti spektrum emisi dari unsur-unsur yang dipanaskan. Ia kemudian menemukan cesium pada tahun 1860, kemudian pada tahun berikutnya dia kembali menemukan rubidium bersama rekannya bernama Gustav Kirchhoff.

Bunsen juga selama hidupnya dikenal sebagai pelopor pada bidang Fotokimia, serta melakukan pekerjaan awal dalam bidang organoarsenic kimia. Dengan dibantu oleh asisten laboratoriumnya bernama Peter Desaga, dia telah berhasil mengembangkan pembakar Bunsen.

Selain dikenal sebagai seorang penemu, Bunsen juga adalah seorang dosen di Göttingen. Setelah tiga tahun mengajar di Sekolah politeknik Kassel, Bunsen akhirnya menerima sebuah asosiasi guru di Universitas Marburg.

Di Universitas Marburg dia kembali melanjutkan studinya tentang cacodl derivatif. Atas penelitiannya tersebut, Bunsen akhirnya dipromosikan menjadi profesor penuh pada tahun 1841.

oleh karena itu tidak banyak orang yang ingin menjadi ilmuwan. itu karena seorang ilmuwan harus mau melakukan pekerjaan yang hasilnya sepadan dengan dengan seluruh penderitaan yang mereka alami.

tentang sel..

Biologi sel modern berkembang dari integrasi antara sitologi, yaitu kajian tentang struktur sel, dan biokimia, yaitu kajian tentang molekul dan proses kimiawi metabolisme. Mikroskop merupakan peralatan yang paling penting dalam sitologi, sementara pendekatan biokimia yang disebut fraksinasi sel juga telah menjadi sangat penting dalam biologi sel.

Mikroskopi

Silia pada permukaan sel bagian dalam trakea mamalia dilihat dengan SEM (perbesaran 10.000 kali pada berkas aslinya).

Mikroskop berperan dalam kajian tentang sel sejak awal penemuannya. Jenis mikroskop yang digunakan para ilmuwan Renaisans dan yang kini masih banyak digunakan di laboratorium ialah mikroskop cahaya. Cahaya tampak dilewatkan menembus spesimen dan kemudian lensa kaca yang merefraksikan cahaya sedemikian rupa sehingga citra spesimen tersebut diperbesar ketika diproyeksikan ke mata pengguna mikroskop. Namun demikian, mikroskop cahaya memiliki batas daya urai, yaitu tidak mampu menguraikan rincian yang lebih halus dari kira-kira 0,2 µm (ukuran bakteri kecil). Pengembangan teknik penggunaan mikroskop cahaya sejak awal abad ke-20 melibatkan usaha untuk meningkatkan kontras, misalnya dengan pewarnaan atau pemberian zat fluoresen. Selanjutnya, biologi sel mengalami kemajuan pesat dengan penemuan mikroskop elektron yang menggunakan berkas elektron sebagai pengganti cahaya tampak dan dapat memiliki resolusi (daya urai) sekitar 2 nm. Terdapat dua jenis dasar mikroskop elektron, yaitu mikroskop elektron transmisi (transmission electron microscope, TEM) dan mikroskop elektron payar (scanning electron microscope, SEM). TEM terutama digunakan untuk mengkaji struktur internal sel, sementara SEM sangat berguna untuk melihat permukaan spesimen secara rinci.

Fraksinasi

Fraksinasi sel ialah teknik untuk memisahkan bagian-bagian sel. Secara umum, teknik ini melibatkan homogenisasi, yaitu pemecahan sel secara halus dengan bantuan blender atau alat ultrasuara, dan sentrifugasi, yaitu pemisahan komponen-komponen sel oleh gaya sentrifugal dalam alat sentrifuge, alat seperti komidi putar untuk tabung reaksi yang dapat berputar pada berbagai kecepatan. Sentrifuge yang paling canggih, yang disebut ultrasentrifuge, dapat berputar secepat 80.000 rotasi per menit (rpm) dan memberikan gaya pada partikel-partikel sampel hingga 500.000 kali gaya gravitasi bumi (500.000 g). Pemutaran homogenat di dalam sentrifuge akan memisahkan bagian-bagian sel ke dalam dua fraksi, yaitu pelet, yang terdiri atas struktur-struktur lebih besar yang terkumpul di bagian bawah tabung sentrifuge, dan supernatan, yang terdiri atas bagian-bagian sel yang lebih kecil yang tersuspensi dalam cairan di atas pelet tersebut. Supernatan ini disentrifugasi kembali dan prosesnya diulangi, dengan kecepatan putaran yang semakin tinggi pada setiap tahap, sehingga komponen sel yang semakin lama semakin kecil terkumpul dalam pelet yang berurutan.

diferensasi dan bagaimana cara sel bunuh diri..

Diferensiasi sel

Diferensiasi sel menciptakan keberagaman jenis sel yang muncul selama perkembangan suatu organisme multiselular dari sebuah sel telur yang sudah dibuahi. Misalnya, mamalia yang berasal dari sebuah sel berkembang menjadi suatu organisme dengan ratusan jenis sel berbeda seperti otot, saraf, dan kulit.Sel-sel dalam embrio yang sedang berkembang melakukan pensinyalan sel yang memengaruhi ekspresi gen sel dan menyebabkan diferensiasi tersebut.

“Bunuh diri sel”

Sel dalam organisme multiselular dapat mengalami suatu kematian terprogram yang berguna untuk pengendalian populasi sel dengan cara mengimbangi perbanyakan sel, misalnya untuk mencegah munculnya tumor. Kematian sel juga berguna untuk menghilangkan bagian tubuh yang tidak diperlukan. Contohnya, pada saat pembentukan embrio, jari-jari pada tangan atau kaki manusia pada mulanya saling menyatu, namun kemudian terbentuk berkat kematian sel-sel antarjari. Dengan demikian, waktu dan tempat terjadinya kematian sel, sama seperti pertumbuhan dan pembelahan sel, merupakan proses yang sangat terkendali. Kematian sel semacam itu terjadi dalam proses yang disebut apoptosis yang dimulai ketika suatu faktor penting hilang dari lingkungan sel atau ketika suatu sinyal internal diaktifkan. Gejala awal apoptosis ialah pemadatan nukleus dan fragmentasi DNA yang diikuti oleh penyusutan sel.

siklus sel

Siklus sel

Video yang dipercepat menggambarkan pembelahan sel bakteri E. coli

Setiap sel berasal dari pembelahan sel sebelumnya, dan tahap-tahap kehidupan sel antara pembelahan sel ke pembelahan sel berikutnya disebut sebagai siklus sel.Siklus ini pada kebanyakan sel terdiri dari empat proses terkoordinasi, yaitu pertumbuhan sel, replikasi DNA, pemisahan DNA yang sudah digandakan ke dua calon sel anakan, dan pembelahan sel.Pada bakteri, proses pemisahan DNA ke calon sel anakan dapat terjadi bersamaan dengan replikasi DNA, dan siklus sel yang berurutan dapat bertumpang tindih. Hal ini tidak terjadi pada eukariota yang siklus selnya terjadi dalam empat fase terpisah sehingga laju pembelahan sel bakteri dapat lebih cepat daripada laju pembelahan sel eukariota.[50] Pada eukariota, tahap pertumbuhan sel umumnya terjadi dua kali, yaitu sebelum replikasi DNA (disebut fase G1, gap 1) dan sebelum pembelahan sel (fase G2). Siklus sel bakteri tidak wajib memiliki fase G1, namun memiliki fase G2 yang disebut periode D. Tahap replikasi DNA pada eukariota disebut fase S (sintesis), atau pada bakteri ekuivalen dengan periode C. Selanjutnya, eukariota memiliki tahap pembelahan nukleus yang disebut fase M (mitosis).

Peralihan antartahap siklus sel dikendalikan oleh suatu perlengkapan pengaturan yang tidak hanya mengkoordinasi berbagai kejadian dalam siklus sel namun juga menghubungkan siklus sel dengan sinyal ekstrasel yang mengendalikan perbanyakan sel. Misalnya, sel hewan pada fase G1 dapat berhenti dan tidak beralih ke fase S bila tidak ada faktor pertumbuhan tertentu, melainkan memasuki keadaan yang disebut fase G0 dan tidak mengalami pertumbuhan maupun perbanyakan. Contohnya ialah sel fibroblas yang hanya membelah diri untuk memperbaiki kerusakan tubuh akibat luka.Jika pengaturan siklus sel terganggu, misalnya karena mutasi, risiko pembentukan tumor—yaitu perbanyakan sel yang tidak normal—meningkat dan dapat berpengaruh pada pembentukan kanker.

Fungsi..

Metabolisme

Keseluruhan reaksi kimia yang membuat makhluk hidup mampu melakukan aktivitasnya disebut metabolisme,dan sebagian besar reaksi kimia tersebut terjadi di dalam sel.Metabolisme yang terjadi di dalam sel dapat berupa reaksi katabolik, yaitu perombakan senyawa kimia untuk menghasilkan energi maupun untuk dijadikan bahan pembentukan senyawa lain, dan reaksi anabolik, yaitu reaksi penyusunan komponen sel.Salah satu proses katabolik yang merombak molekul makanan untuk menghasilkan energi di dalam sel ialah respirasi selular, yang sebagian besar berlangsung di dalam mitokondria eukariota atau sitosol prokariota dan menghasilkan ATP. Sementara itu, contoh proses anabolik ialah sintesis protein yang berlangsung pada ribosom dan membutuhkan ATP.

 

Komunikasi sel

Kemampuan sel untuk berkomunikasi, yaitu menerima dan mengirimkan ‘sinyal’ dari dan kepada sel lain, menentukan interaksi antarorganisme uniselular serta mengatur fungsi dan perkembangan tubuh organisme multiselular. Misalnya, bakteri berkomunikasi satu sama lain dalam proses quorum sensing untuk menentukan apakah jumlah mereka sudah cukup sebelum membentuk biofilm, sementara sel-sel dalam embrio hewan berkomunikasi untuk koordinasi proses diferensiasi menjadi berbagai jenis sel.

Komunikasi sel terdiri dari proses transfer sinyal antarsel dalam bentuk molekul (misalnya hormon) atau aktivitas listrik, dan transduksi sinyal di dalam sel target ke molekul yang menghasilkan respons sel. Mekanisme transfer sinyal dapat terjadi dengan kontak antarsel (misalnya melalui sambungan pengkomunikasi), penyebaran molekul sinyal ke sel yang berdekatan, penyebaran molekul sinyal ke sel yang jauh melalui saluran (misalnya pembuluh darah), atau perambatan sinyal listrik ke sel yang jauh (misalnya pada jaringan otot polos). Selanjutnya, molekul sinyal menembus membran secara langsung, lewat melalui kanal protein, atau melekat pada reseptor berupa protein transmembran pada permukaan sel target dan memicu transduksi sinyal di dalam sel. Transduksi sinyal ini dapat melibatkan sejumlah zat yang disebut pembawa pesan kedua (second messenger) yang konsentrasinya meningkat setelah pelekatan molekul sinyal pada reseptor dan yang nantinya meregulasi aktivitas protein lain di dalam sel. Selain itu, transduksi sinyal juga dapat dilakukan oleh sejumlah jenis protein yang pada akhirnya dapat memengaruhi metabolisme, fungsi, atau perkembangan sel.

Komponen Ekstraselular ==> Luar sel

Sel-sel hewan dan tumbuhan disatukan sebagai jaringan terutama oleh matriks ekstraselular, yaitu jejaring kompleks molekul yang disekresikan sel dan berfungsi utama membentuk kerangka pendukung. Terutama pada hewan, sel-sel pada kebanyakan jaringan terikat langsung satu sama lain melalui sambungan sel.

  • Matriks ekstraselular hewan

Matriks ekstraselular sel hewan berbahan penyusun utama glikoprotein (protein yang berikatan dengan karbohidrat pendek), dan yang paling melimpah ialah kolagen yang membentuk serat kuat di bagian luar sel. Serat kolagen ini tertanam dalam jalinan tenunan yang terbuat dari proteoglikan, yang merupakan glikoprotein kelas lainVariasi jenis dan susunan molekul matriks ekstraselular menimbulkan berbagai bentuk, misalnya keras seperti permukaan tulang dan gigi, transparan seperti kornea mata, atau berbentuk seperti tali kuat pada otot. Matriks ekstraselular tidak hanya menyatukan sel-sel tetapi juga memengaruhi perkembangan, bentuk, dan perilaku sel.

  • Dinding sel tumbuhan

Dinding sel tumbuhan merupakan matriks ekstraselular yang menyelubungi tiap sel tumbuhan.Dinding ini tersusun atas serabut selulosa yang tertanam dalam polisakarida lain serta protein dan berukuran jauh lebih tebal daripada membran plasma, yaitu 0,1 µm hingga beberapa mikrometer. Dinding sel melindungi sel tumbuhan, mempertahankan bentuknya, dan mencegah penghisapan air secara berlebihan.

  • Sambungan antarsel

Sambungan sel (cell junction) dapat ditemukan pada titik-titik pertemuan antarsel atau antara sel dan matriks ekstraselular. Menurut fungsinya, sambungan sel dapat diklasifikasikan menjadi tiga, yaitu (1) sambungan penyumbat (occluding junction), (2) sambungan jangkar (anchoring junction), dan (3) sambungan pengkomunikasi (communicating junction). Sambungan penyumbat menyegel permukaan dua sel menjadi satu sedemikian rupa sehingga molekul kecil sekalipun tidak dapat lewat, contohnya ialah sambungan ketat (tight junction) pada vertebrata. Sementara itu, sambungan jangkar menempelkan sel (dan sitoskeletonnya) ke sel tetangganya atau ke matriks ekstraselular. Terakhir, sambungan pengkomunikasi menyatukan dua sel tetapi memungkinkan sinyal kimiawi atau listrik melintas antarsel tersebut. Plasmodesmata merupakan contoh sambungan pengkomunikasi yang hanya ditemukan pada tumbuhan.

sitoskeleton,

Sitoskeleton

Sitoskeleton sel eukariota; mikrotubulus diwarnai hijau, sementara mikrofilamen diwarnai merah.

Sitoskeleton eukariota terdiri dari tiga jenis serat protein, yaitu mikrotubulus, filamen intermediat, dan mikrofilamen.Protein sitoskeleton yang serupa dan berfungsi sama dengan sitoskeleton eukariota ditemukan pula pada prokariota.Mikrotubulus berupa silinder berongga yang memberi bentuk sel, menuntun gerakan organel, dan membantu pergerakan kromosom pada saat pembelahan sel. Silia dan flagela eukariota, yang merupakan alat bantu pergerakan, juga berisi mikrotubulus. Filamen intermediat mendukung bentuk sel dan membuat organel tetap berada di tempatnya. Sementara itu, mikrofilamen, yang berupa batang tipis dari protein aktin, berfungsi antara lain dalam kontraksi otot pada hewan, pembentukan pseudopodia untuk pergerakan sel ameba, dan aliran bahan di dalam sitoplasma sel tumbuhan.

Sejumlah protein motor menggerakkan berbagai organel di sepanjang sitoskeleton eukariota. Secara umum, protein motor dapat digolongkan dalam tiga jenis, yaitu kinesin, dienin, dan miosin. Kinesin dan dienin bergerak pada mikrotubulus, sementara miosin bergerak pada mikrofilamen.

about peroksisom

Peroksisom

Peroksisom berukuran mirip dengan lisosom dan dapat ditemukan dalam semua sel eukariota.Organel ini dinamai demikian karena biasanya mengandung satu atau lebih enzim yang terlibat dalam reaksi oksidasi menghasilkan hidrogen peroksida (H2O2).Hidrogen peroksida merupakan bahan kimia beracun, namun di dalam peroksisom senyawa ini digunakan untuk reaksi oksidasi lain atau diuraikan menjadi air dan oksigen. Salah satu tugas peroksisom adalah mengoksidasi asam lemak panjang menjadi lebih pendek yang kemudian dibawa ke mitokondria untuk oksidasi sempurna.Peroksisom pada sel hati dan ginjal juga mendetoksifikasi berbagai molekul beracun yang memasuki darah, misalnya alkohol. Sementara itu, peroksisom pada biji tumbuhan berperan penting mengubah cadangan lemak biji menjadi karbohidrat yang digunakan dalam tahap perkecambahan.

Kupas habis ”KLOROPLAS”

Gambaran umum kloroplas.

Kloroplas merupakan salah satu jenis organel yang disebut plastid pada tumbuhan dan alga.Kloroplas mengandung klorofil, pigmen hijau yang menangkap energi cahaya untuk fotosintesis, yaitu serangkaian reaksi yang mengubah energi cahaya menjadi energi kimiawi yang disimpan dalam molekul karbohidrat dan senyawa organik lain.

Satu sel alga uniselular dapat memiliki satu kloroplas saja, sementara satu sel daun dapat memiliki 20 sampai 100 kloroplas. Organel ini cenderung lebih besar daripada mitokondria, dengan panjang 5–10 µm atau lebih. Kloroplas biasanya berbentuk seperti cakram dan, seperti mitokondria, memiliki membran luar dan membran dalam yang dipisahkan oleh ruang antarmembran. Membran dalam kloroplas menyelimuti stroma, yang memuat berbagai enzim yang bertanggung jawab membentuk karbohidrat dari karbon dioksida dan air dalam fotosintesis. Suatu sistem membran dalam yang kedua di dalam stroma terdiri dari kantong-kantong pipih disebut tilakoid yang saling berhubungan. Tilakoid-tilakoid membentuk suatu tumpukan yang disebut granum (jamak, grana). Klorofil terdapat pada membran tilakoid, yang berperan serupa dengan membran dalam mitokondria, yaitu terlibat dalam pembentukan ATP.Sebagian ATP yang terbentuk ini digunakan oleh enzim di stroma untuk mengubah karbon dioksida menjadi senyawa antara berkarbon tiga yang kemudian dikeluarkan ke sitoplasma dan diubah menjadi karbohidrat.

Sama seperti mitokondria, kloroplas juga memiliki DNA dan ribosomnya sendiri serta tumbuh dan memperbanyak dirinya sendiri.Kedua organel ini juga dapat berpindah-pindah tempat di dalam sel.

si mitokondria, bagian sel

Mitokondria

Gambaran mitokondria.

Sebagian besar sel eukariota mengandung banyak mitokondria, yang menempati sampai 25 persen volume sitoplasma. Organel ini termasuk organel yang besar, secara umum hanya lebih kecil dari nukleus, vakuola, dan kloroplas.Nama mitokondria berasal dari penampakannya yang seperti benang (bahasa Yunani mitos, ‘benang’) di bawah mikroskop cahaya.

Organel ini memiliki dua macam membran, yaitu membran luar dan membran dalam, yang dipisahkan oleh ruang antarmembran. Luas permukaan membran dalam lebih besar daripada membran luar karena memiliki lipatan-lipatan, atau krista, yang menyembul ke dalam matriks, atau ruang dalam mitokondria.

Mitokondria adalah tempat berlangsungnya respirasi selular, yaitu suatu proses kimiawi yang memberi energi pada sel. Karbohidrat dan lemak merupakan contoh molekul makanan berenergi tinggi yang dipecah menjadi air dan karbon dioksida oleh reaksi-reaksi di dalam mitokondria, dengan pelepasan energi. Kebanyakan energi yang dilepas dalam proses itu ditangkap oleh molekul yang disebut ATP. Mitokondria-lah yang menghasilkan sebagian besar ATP sel.Energi kimiawi ATP nantinya dapat digunakan untuk menjalankan berbagai reaksi kimia dalam sel.Sebagian besar tahap pemecahan molekul makanan dan pembuatan ATP tersebut dilakukan oleh enzim-enzim yang terdapat di dalam krista dan matriks mitokondria.

Mitokondria memperbanyak diri secara independen dari keseluruhan bagian sel lain.Organel ini memiliki DNA sendiri yang menyandikan sejumlah protein mitokondria, yang dibuat pada ribosomnya sendiri yang serupa dengan ribosom prokariota.